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Elimination of Fast Chaotic Degrees of Freedom:
On the Accuracy of the Born Approximation
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We apply standard projection operator techniques known from nonequilibrium
statistical mechanics to eliminate fast chaotic degrees of freedom in a low-
dimensional dynamical system. Through the usual perturbative approach we
end up in second order with a stochastic system where the fast chaotic degrees
of freedom are modelled by Gaussian white noise. The accuracy of the pertur-
bation expansion is analysed in detail by the discussion of an exactly solvable
model.

KEY WORDS: Elimination of fast variables; projection operator techniques;
Fokker-Planck equation.

1. INTRODUCTION

Elimination of fast degrees of freedom is one of the classical and central
issues of nonequilibrium statistical physics. There exist numerous concepts
to model the influence of a deterministic thermodynamic heat bath by
effective stochastic forces or noise, resulting either in Langevin equations
or stochastic differential equations, in Fokker-Planck equations, in Master
equations or Boltzmann equations and so on. The thermodynamic proper-
ties of the heat bath, in particular its thermodynamic limit, plays a double
role. On the one hand the limit guarantees the decay of correlations of bath
variables. On the other hand, by a variant of the law of large numbers the
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statistics of the heat bath and in particular of the stochastic forces becomes
Gaussian. Furthermore, fluctuation dissipation relations display on the
level of the slow variables the Hamiltonian structure of the underlying
microscopic dynamics.

Problems which are related with the dynamics on different time scales
are known for centuries, e.g., in celestial mechanics. Thus time scale sepa-
ration and elimination of fast variables are a central issue in quite different
contexts,V e.g., for the investigation of instabilities in physical, chemical or
biological systems.® It is a common feature of all these examples that one
typically has a finite number of fast degrees of freedom and time scale
separation comes through the values of the parameters of the system.
Depending on the type of the fast motion one can group elimination
schemes which are qualitatively different.

If the fast motion is purely relaxatory then elimination of the fast
degrees of freedom is usually called adiabatic elimination.® In formal
terms the full system has a slow invariant manifold and one obtains a
deterministic effective equation of motion for the slow variables. This case
is very well understood even from a rigorous mathematical point of view
(cf., e.g., refs. 4 and 5). When the motion of the fast variable is periodic
in time then the elimination is performed by averaging the fast degrees of
motion. Again one obtains a deterministic effective equation of motion for
the slow part of the dynamics.*® Here we consider the third possibility
where the slow degrees of freedom are coupled to a finite number of fast
chaotic modes and where no manifold reduction can be applied.

Such problems arise for instance in climate research” or molecular
dynamics. For numerical purposes in long time simulations, but also for
principle reasons, the elimination of the fast modes is often highly desir-
able. Already a finite number of fast chaotic modes share with thermody-
namic heat baths the decay of correlations so that the reasoning sketched
above indicates that fast chaotic degrees of freedom can be modelled by
suitable stochastic processes. Of course one should not expect a Gaussian
statistics from the very beginning since nothing comparable to the law of
large numbers is available in a system with a finite number of degrees of
freedom. On the other hand, a simple temporal average resulting in an
effective deterministic description of the slow dynamics is a rather coarse
approximation, if fast chaotic modes are considered, as we will show. In
fact as one of our main results we will derive a Fokker—Planck equation for
the slow variables, Eq. (13), where drift and diffusion constants represent
the features of the fast degrees of freedom and which can be calculated by
time averages, Eqs. (14)-(16).

We would like to mention approaches which have been made for
systems which are driven by a fast stochastic motion. Note that for such a
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system a diffusion approximation of the slow motion is known already for
several decades. It is even proven rigorously that on a finite time interval
the fast stochastic motion can be reduced to a kind of observational
Gaussian white noise whenever time scale separation is pronounced.®
Furthermore a kind of Langevin dynamics has been derived.® These
approaches resemble response theory as used, e.g., by physicists for ages
for the discussion of stochastic systems.'” Since the mathematical rigorous
concept is constrained to finite time intervals, the analysis is in general
neither able to cope with noise induced transitions nor to describe accu-
rately the stationary behaviour of the dynamics. Nevertheless there exist
certain model systems where one can relax such a constraint and where fast
chaotic degrees of freedom can be mapped to a Gaussian white noise due
to certain scaling properties.

In this paper we consider general model systems with two time scales,
where the slow degrees of freedom x are coupled to fast variables y

dx
o
n (x,y)
ey
dy 1
@ e g(x, y).

The small parameter 0 <& << 1 mediates the separation of time scales,
where f and g are assumed to be of the order of unity. It is our goal to
approximate the motion of the slow variables x by an effective equation
of motion where the fast variables y are replaced by a suitable stochastic
process. This problem seems to be relatively simple if the slow degrees of
freedom have no back-coupling to the fast ones, i.e., when g does not
depend on x. Then y is a fairly complicated stochastic process where the
distribution is determined by the invariant measure of the fast dynamics.
Of course there remains the highly nontrivial task to study whether one can
approximate such a stochastic process in the limit of small ¢ by simpler
processes, €.g., a white noise process. The situation is less evident when the
slow degrees of freedom couple to the fast ones. Then the properties of an
effective stochastic force may depend on the slow variable itself (cf. the
numerical simulation in ref. 12). However, our formalism for the derivation
of a stochastic model for the slow degrees of freedom will be independent
of whether or not g depends on x, and the only difference will be the par-
ticular dependence of the diffusion term on x.

It is not a matter of principle, but the elimination of fast degrees
of freedom is technically simpler to perform if one considers the time
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evolution of probability density functions. The equation of motion which
corresponds to the system (1) reads

ap, 1
a-’i:—fp,(x, Y)=—<z%+°%>pt(xa y) (2)

where the generator is given by

P
Lp(x,y) =) . g.(x,¥) p(x,y)

; (3)
Lp(x,y) =Y, 5 S5 ¥) P ).

"

Equation (2) displays a natural splitting of the generator which will be used
to set up a perturbation scheme. In addition, the reduction to the slow
degrees of freedom can be performed on the level of densities in a straight-
forward way by considering the reduced density

5.0 = dy p(x,¥) =: Tr,[p,] )

We have introduced the abbreviation Tr, to indicate the integral with
respect to the fast variables.

It is the essential step to derive a closed evolution equation for the
reduced density from the full equation of motion (2). The desired elimina-
tion can be performed with standard projection operator techniques which
are well known in the context of nonequilibrium statistical physics."® To
keep our paper self contained we review in Section 2 the main features
of such an approach and perform the formal perturbation expansion for
the model (1). In second order perturbation expansion we will derive a
Fokker-Planck equation where the diffusion is given in terms of properties
of the fast chaotic dynamics. In fact, the crucial part of the approach con-
sists in the proper choice of the projection operator. In contrast to one of
the previous approaches"? here we directly end up with effective drift and
diffusion coefficients which are given in terms of time averages of the fast
dynamics.

Our perturbation expansion is still a formal procedure and we cannot
prove its convergence. However, properties of the perturbation expansion
can be understood when comparing with exactly solvable model systems.
For that purpose we discuss in Section 3 a linear system coupled to a fast
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Ornstein—Uhlenbeck process. Such an analysis clearly reveals the accuracy
of the perturbation expansion and the relevance of the renormalization of
the effective drift.

2. ELIMINATION OF FAST VARIABLES

The construction of the reduced density (4) may be considered as
a formal projection of the full density. If we model the fast degrees of
freedom by a fixed distribution p,4(y|x) then the reduction can be
achieved by the projection operator

2Zp.(X,¥) = paa(y | X) Tty p, = poa(y | X) pr(X). ®)

The normalization of the density p,; ensures that £ is idempotent.
Employing standard projection operator techniques® a formally exact
and closed equation of motion for the reduced density can be derived
op, = : =
= L] P1+L dt' Tr,[ £ exp(—221') 2Lp.a] piv (6)

where we have used the abbreviation 2 =.4—2 to indicate the comple-
mentary projection operator. The usefulness of such an expression and in
particular the properties of perturbation expansions depends crucially on
the choice of the projection. In fact, there are no rules which yield a unique
or at least optimal projection operator for a given problem. The choice
(5) of the reduced density p,(x) for £ is very natural since we look for an
evolution equation for the marginal distribution in the slow variable. In
a previous work@® we have chosen (5) with the conditional stationary
density. Although the resulting perturbation expansion has nice formal
properties and can be written down to infinite order (cf. ref. 14) the
obtained drift and diffusion coefficients cannot be linked easily to dynami-
cal properties of the fast equation of motion without making additional
assumptions. Hence we follow here a different strategy and choose a dif-
ferent type of projection operator. Evidence for the choice of p,4(y|x) for
2 is provided by the convergence of stochastic kernels (cf. ref. 15) yielding
the zeroth order approximation in (13).

Let us consider the invariant density of the fast equation of motion
when the slow variables x are considered as fixed parameters. This density
Paa ObEYS

2o Paa(y [ X) =0. ()
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Averages with respect to such a density can be written as long time
averages for typical initial conditions

1 r7
o (0 := [ dy hx.y) pua(¥ 10 = Tim — [ "dihix,nlt/e,y:x]) (@)

where n[¢,y; x] denotes a solution of the fast equation of motion with
initial condition y, i.e.,

onlt,y; x]

P =gx,nlt,y;x]), nlz=0,y;x]=y. )

Here we assume that the dynamics of the fast degrees of freedom is mixing
so that in addition correlation functions decay sufficiently rapid.
Equation (7) ensures that the projection operator (5) obeys

PL = LP=0. (10)

Such an algebraic condition is the crucial property for the formal pertur-
bation expansion. It ensures that the memory kernel is of higher order with
respect to the expansion parameter and that the projection operator projects
onto a subspace which is stationary with respect to the .%,-dynamics. Thus
the projector indeed eliminates the fast dynamics. Applying the standard
second order perturbation expansion Eq. (6) reduces to

p: _

D= —(Lru Pt | AL oxp(— %t [5) 280 Prr (1)

where third and higher order terms of the right hand side have just been
discarded. The systematic part, i.e., the first term of the right hand side,
just yields the adiabatic average of the slow vector field (cf. Eq. (3)). Since
the kernel of the integral is determined by the propagator of the fast
degrees of freedom, its evaluation is quite straightforward taking the
identity

Tr,[A(x, y) exp(—=%t/e) p(x,y)] = Tr,[h(x,n[t/e,y; x]) p(x,¥)] (12)

into account. The time dependence of the kernel is governed by the corre-
lations of the fast system. If these correlations do not decay sufficiently
fast, then the memory kernel in the Master equation (11) produces a con-
tribution which increases in time. Thus one has to require that correlations
of the fast system decay, e.g., exponentially, in order to avoid such secular
contributions. It is exactly this feature where we need the chaotic properties
of the underlying fast motion.
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In addition we may employ a Markov approximation. After some
quite straightforward algebra (cf. Appendix A) we end up with the Fokker—
Planck equation

op, 0 ,em 0 Laem
== —Z x, — D (x) p,(x)+z o, ox, ——— D7 x) p(x).  (13)

The effective diffusion is given by the autocorrelation of the fluctuation of
the slow vector field

Dy (x) = f:o dt' (0o [ (X, M1/ &, ¥; X]) Gaa [1(X, ¥) D (14)

where

0uaf(x, y) = (X, y) = {f)sq (X) (15)

denotes the static fluctuation. The effective drift consists of the adiabatic
average of the slow vector field and a renormalization by chaotic fluctuations

D (x) = { fuaa (X)+Zf dt'{ f3(x,¥) 00,4 f,(x, n[t' /&, ¥; X1)/ 0%, Yoa-
(16)

Since by assumption the correlation functions of the fast chaotic dynamics
decay on a time scale proportional to &, the integrals in Eqs. (14) and (16)
converge, if we impose some regularity assumptions. The coefficients of the
effective Fokker—Planck equation (13) are just adiabatic averages and can
be computed as plain temporal averages with respect to the fast dynamics
(cf. Eq. (8)).

Our perturbation expansion results to lowest nontrivial order in a
Fokker—Planck equation. Equivalently one may describe the slow degrees
of freedom by a stochastic differential equation with a Gaussian white
noise (cf., e.g., ref. 16 for explicit expressions). From such a point of view
the validity of the perturbation expansion is not obvious. Gaussian
stochastic forces are unbounded in contrast to the real fast degrees of
motion which typically have finite amplitude even in the limit of small e.
In certain situations the properties of exit time or tunnelling problems
may depend on whether the forces driving the slow degrees of freedom
have finite or infinite amplitude. If for instance the amplitude of the fast
modes y is small one may apply linear response theory to the system (1)
and the nontrivial aspects of exit time dynamics are suppressed completely.
However the mathematical approaches mentioned in Section 1 state that



284 Just et al.

regardless of such constraints the fast motion can be approximated by
Gaussian stochastic forces on finite time intervals provided the time scale
separation is pronounced (cf. the numerical simulations in ref. 12).

If we extend the formal expansion of Eq. (6) to higher orders then we
obtain evolution equations which do not any longer display a Fokker—
Planck structure but contain higher order derivatives. These contributions
are not a priori small in a mathematical setting. Furthermore, in any finite
order beyond the second, the density may loose its positivity so that no
simple mapping of the density equation to a stochastic differential equation
might be possible.

Thus the validity of the perturbation expansion on long time scales is a
rather subtle subject and finally might involve the amplitude of the fast
modes y, too. To clarify this issue to some extent it helps to consider simple
model systems that can be solved analytically. One should not expect an
ultimate answer to all the questions just raised, but at least one gets some
insight into the quality of the Born approximation (11).

3. EXACT SOLUTION OF A LINEAR MODEL

The perturbation expansion of the previous section is a formal proce-
dure and it seems quite difficult to estimate its validity. Thus we are going
to set up a simple model system where exact solutions are available and
where the features of the expansion can be studied. There is unfortunately
no simple time continuous chaotic model available which can serve for
such a purpose. Geodesic flows on surfaces of negative curvature are tech-
nically cumbersome to handle and simple chaotic maps that can be gener-
ated by a kicked dynamics do not fit straightforwardly in our setup
(cf.,, e.g., ref. 11 for a study of maps coupled to a dynamical system). In
order to concentrate on the essential features of our perturbation expan-
sion we follow a different strategy. We model the fast chaotic dynamics
by a stochastic process and we consider a completely linear model so that
analytical solutions can be obtained without great effort. The equations of
motion read

@=—ocx+ﬁy, (x>0)

dt
dy 1 K an
Z=E(_'1y+”x)+7gf(t)’ (4>0)

where & denotes a Gaussian white noise with correlation function <&(¢) &(¢"))
=20(¢—1t"), and the stochastic integrals are interpreted in the sense of
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Stratonovich. Thus the fast chaotic mode is an Ornstein—Uhlenbeck
process coupled to the slow coordinate. In fact models of this type are very
well investigated, i.e., for the study of coloured noise."” Here we just focus
on the elimination of the fast degree of freedom in lowest nontrivial order
of the expansion parameter ¢. We have to scale the noise amplitude with
1/ \/é to guarantee that the corresponding Fokker—Planck operator can be
split according to Eq. (2). The generator (3) of the dynamics reads

0 0?
Lp(x,y) = <@ [ —Ay+pux] ~3 K2> p(x,y)
18)
0
Zp(x,y) = F [—oax+By] p(x, ).

It splits again the motion into a fast and a slow part. The generator .%
already contains a diffusive part since the fast motion is constructed by
a Gaussian stochastic process. Our general considerations of the previous
section are however not influenced by such a property.

It is quite straightforward to determine the adiabatic density using

Eq. (7):
Pty 0= [5iew| —5a(r-4x) | 19)

Hence the adiabatic average (8) and the static fluctuation (15) of the slow
vector field read

Fra ) =—~(2=p4)
0)

51 (%, ) =ﬂaady=ﬁ<y—§x).

If £ denotes the adjoint operator of %, with respect to Tr, we have

PL16.4y =—Ad,4 v, and the time dependent fluctuations are easily obtained

as*

exp(—=Zit/e) 0,0 f (X, y) = exp(—At/&) Boua y = dua [ (x, 1l /&, y; x]).
@1

“In order to keep for our stochastic model (17) the same notation as in Section 2 we take
Eq. (21) as the definition for d,4 f(x, 7[¢/¢, y; x]).
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Thus taking the definition (21) into account the evaluation of the effective

drift and diffusion coefficients (16), (14) of second order perturbation
theory is quite simple and we end up with

D(l,eff)(x) — _(a_ﬁ%><1_8ﬂ%> x=: —aTx

P
?.

(22)
DM (x) =ex

The effective diffusion is determined by the time scale of the fluctuations
and the coupling strength of the fast degrees of freedom to the slow ones.
The coefficient «°T of the effective drift is renormalised by fast degrees
of freedom in two ways. The renormalization in the first factor is already
known from centre manifold theory and just takes the transformation to
the slow manifold into account (cf. Eq. (27)). The renormalization by the
second factor comes through the fluctuations of the fast variables.

It is quite well known that the motion of the slow variable is governed
by an effective Fokker-Planck equation only up to the second order of the
perturbation expansion.'” Thus even for such a simple linear system no
plain Fokker—Planck structure shows up on an exact level. To estimate the
accuracy of our perturbative result we compare it to the solution of the full
system. Let us first consider the stationary solution of the reduced density.
Taking the expressions (22) into account the effective Fokker—Planck
equation (13) yields

0[effﬂz O(.effj.z )
p.(x)= [l exp( -2 LX) 23
Pu(x) 2mexc? B> xp < 2exc’ B> x ) 23)

Since the full system (cf. Egs. (18)) is a two-dimensional linear Fokker—
Planck system its stationary solution can be written down easily. For the
reduced density we obtain

_ ar? ar?
P () |exace = W €Xp < —W x2> (24)

&=<a—ﬁ%><l+e%>. (25)

Comparison shows that our perturbation expansion reproduces the sta-
tionary reduced distribution, i.e., all its cumulants, in the lowest nontrivial
order of .

where
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As a second quantifier for the accuracy of the perturbation expansion
let us dwell on the relaxation rate, i.e., the first nontrivial eigenvalue of the
Fokker—Planck operator. These eigenvalues are just determined by the drift
of the Fokker-Planck equation (cf., e.g., ref. 16). Equation (13) together
with the expressions (21) yields

A=<a—/3%><l—sﬁ%> (26)

whereas the exact quantity is obtained from the diagonalization of the
deterministic part of the two-dimensional system (17)

Al = “—pul’ —A+0@E).  (27)

(1+eoc//1)/2+\/(1—aoc//l)z/4+s/3,u//12_

Here we observe in fact a coincidence including the first order in ¢ which is
one order beyond the lowest nontrivial order in &. In the one-dimensional
case, i.e., in our approximation, both the width of the distribution and the
relaxation rate are essentially determined by D ™). Since the width of the
exact reduced density p,(x) is not identical to the relaxation of the two-
dimensional full problem, no one-dimensional projection can reproduce
both results simultaneously. Our approximation reproduces the relaxation
rate with better accuracy than the width of the distribution. Such a prop-
erty depends crucially on the proper drift renormalization through the
chaotic fluctuations.

4, CONCLUSION

We have described a scheme to model fast chaotic degrees of freedom
by suitable stochastic forces. The approach is based on a description using
densities and employs standard projection techniques which are known in
statistical mechanics for decades. Contrary to previous work'? the projec-
tion operator proposed here yields effective diffusion and drift renor-
malization which can be expressed in terms of temporal averages with
respect to the fast chaotic motion.

The crucial step of the whole procedure is the application of the
perturbation expansion with respect to the time scale separation and the
restriction to a low order of the perturbation expansion. The formal
expansion can be developed easily and we end up with a Fokker—Planck
equation respectively a Langevin equation with Gaussian white noise. To
check the accuracy of the expansion we have analysed a simple linear
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model which can be solved exactly. The perturbation expansion reproduces
the stationary density in the lowest nontrivial order, and it reproduces
temporal characteristics including the first order of &. We should stress that
the diffusion constant is of order &, hence in the limit of perfect time scale
separation the diffusion tends to zero.

In general one cannot expect that such formal expansions are uni-
formly valid in time. Fast chaotic degrees of freedom have typically a finite
amplitude, i.e., such motion cannot induce transitions between different
stationary states if the amplitude of chaotic oscillations is too small. On
the other hand any arbitrary small Gaussian noise induces tunnelling phe-
nomena on exponentially long time scales. Nevertheless the modelling of
fast chaotic degrees of freedom may be suitable on finite time scales. But
such subtle mechanisms turn a real proof of the convergence of the expan-
sion into a real challenge and there is no ultimate answer available yet.

APPENDIX A. THE PERTURBATION EXPANSION

To keep our presentation entirely self contained we will describe the
derivation of the Fokker-Planck equation in more detail. Subject of our
investigation is the propagation of a statistical ensemble representing the
distribution of initial states on some bounded domain £ of the phase space.
We take in the following the physicists’ point of view and assume for sim-
plicity that the ensemble can be described by a measure which is absolutely
continuous with respect to the Lebesgue measure. Hence states can be
described by densities and the Liouville-like equation (2) which is under-
stood in the sense of distributions governs the motion of the system. For
general dynamical systems especially the existence of invariant distributions
which are absolutely continuous crucially depends on the underlying
dynamics. We expect that most parts of our approach can be rewritten in
terms of measures, but we do not give a rigorous account here.

Let us assume that on Q the forward flow for Eq. (1) exists. Further-
more we suppose that the dynamics (9) in the fast variables possesses a
smooth stationary distribution p,4(- |x) for any frozen x and that the
motion is exponentially mixing with a mixing rate which is uniformly
bounded for all x. Let us consider an ensemble initially distributed accord-
ing to some density p for which p(x, y) = p,a(y | x) Tr,[ p(x, y)].

We apply the Zwanzig projection method® to Eq. (2) and obtain

07
D= 2SI+ PL | (0L Pe NI ds—PLe I 9p, pyy=p,
0

(28)



Elimination of Fast Chaotic Degrees of Freedom 289

which is the starting point for our approximations. The first term of the
right hand side of (28) can be viewed as the self-interaction of the projected
components. For the projector (5) it is the generator for the dynamics
of the adiabatically averaged slow motion (see below). The second term
embodies a memory term. The third term is determined only by the com-
plementary component of the initial distribution and vanishes due to our
assumption for the initial distribution. Note that if such an assumption is
not satisfied additional contributions to the equation of motion for Zp,
may occur. However such contributions will be discarded since they should
not play any relevant role, e.g., for evaluating stationary distributions.

The Nakajima—Zwanzig equation (28) involves the dynamics which is
determined by the abstract problem

do,
e —9%a0,, O,_0=0. 29)

One can easily check that for a solution of (29) we always have 0%q, /0t
=0 and hence Zag, = 0 for all 7 provided that ¢ = 0. Thus (29) models the
complementary dynamics. Although the Zwanzig projection method is a
well-established technique we would like to remark that contrary to the
Liouville-like equation (1) where solutions of associated initial value
problems always exist it is a severe problem to show that Eq. (29) has a
proper mathematical meaning. A mathematically rigorous setup of the
Nakajima—Zwanzig equation is a nontrivial task. No general solution has
been proposed so far to our best knowledge (cf. ref. 18 for the analysis of
finite rank projection operators). In our opinion it is a challenge for further
research from the mathematical point of view.

Here we just focus on the formal evaluation of Eq. (28) which is based
on the essential property (10). We obtain for Eq. (28) using 2% =
e7'9%, + 2%, and the standard exponential identity

0

= Pp =P LD+ P, [ "2t g 4 pp ds
0

/e psle
2P, f’ [ st p gttt 08P, duds. (30)
0 0

In this presentation we are aiming to derive an approximate equation of
motion for p, including corrections up to order ¢ only. Therefore we may
truncate Eq. (30) by neglecting the third term on the right hand side
which is formally of order 2. Whether such a Born approximation is in
general valid on long time scales is still a very delicate problem. In fact
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such an approximation means that in the memory kernel the full pro-
pagator exp(—2.%t) can be replaced by the lowest order contribution
exp(—2%t/¢). Evaluation of the remaining contributions in Eq. (30) is
quite straightforward

PLLPP, = pua(y|X) Z <f,,>ad (x) p.(x) (1)

gze—ﬂi’o(t—s)/e’@b%gps

0 0
= paa(y|x) Tr, [Z EIES y)(f”"("”/e ; o £i(%,¥) paa(y %)

I

0
—e 28I ep (| x) Try [; B, Si(%,¥) paa(§ %) D pi(x) } (32)

Since p,4(- | X) is stationary we have exp(—2.%t) p.a(V|X) = p.a(y | x) for
any ¢t = 0. For an integrable function y which vanishes at the boundaries of
the domain Q we have Tr,[/] = Tr,[exp(—2.%¢) Y] for any ¢ > 0. Therefore,
Eq. (32) may be expressed in terms of the static fluctuation (15). Employing
in addition the solution of the fast equation of motion (9) with initial con-
dition y and taking into account the identity exp(—Z{2') 6,41, (X,y) =
0.4.f, (X, [ /¢, y; X]) the equation of motion (30) results in

op,(x)

. 19(, 1, %)

= —Z P <f Paa (X) pt(X)+Z

;4

T o 1<1>(g %) (33)

where the two remaining integral terms have been abbreviated by

19z, 1,x)

= J: Try[éadfﬂ(x’ Tl[(t_s)/s, ya X]) 5adf/1(x’ y) pad(y | X)] p_s(x) dS
(34)

and by

I, 1, %)

= [0 3| (5 =90/ xXD) ) 9 sy 30 | 70
@9)
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Now we employ a Markov approximation. The fast dynamics is supposed
to be exponentially mixing. Hence correlation functions decay rapidly.
Moreover Tr,[d,q4f,(X,¥) p.a(y|x)]=0. Thus, the kernel in Eq. (34)
decays on a time scale determined by the inverse mixing rate of the fast
subsystem. Replacing g, by p, and extending the integration to infinity we
can approximate the integral term (34) by D" (x) p,(x). Analogously,
investigating Eq. (35) we use the equality

0
Tr, [(5 Oaa fu (X, ML, s XJ)> Ji(%¥) paa(¥ %) ]
A

0
= a Try[aadfﬂ(xa 7][5, Y; X]) fl(x’ y) pad(y I X)]
A

0 01
<1 | gy s XD (Lt £ T 5y |

(36)

Because of mixing the right hand side tends to zero as s — co. Thus, for all ¢
exceeding the inverse mixing rate we can approximate the integral term (35)
by (DM (x) = {f, >0 (X)) p,(x). Putting all terms together, we obtain the
approximate equation (13).
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